Blue-O Technology INC |
Renewable Energies Fuel Cells
Hydrogen Fuel Cell CatalystPlatinum
Pt Nanoparticle /Nanopowder CAS Number : 7440-06-4Graphite
C One-Dimensional Nano- Object CAS Number : 7782-42-5From Platinum film to platinum nanoparticles, the reduction of Platinum as hydrogen fuel cell catalyst has been a great success. However, the further reduction of Pt nanoparticle (NP) size has been limited as many researches reported the optimized size of Pt-NPs is around 4-6 nanometer. The other known facts are that most catalytic reactions occur on the surface of the catalyst, in which the active sites are the other critical factor to the catalytic activity. Mathematically, for any spherical NPs at 5 nm, , the majority weight of Pt of these NPs are not utilized by surface reaction. A critical question is whether there is a technology that can prepare a thin coating on the nano-meter size support at a desirable dimension to exert same excellent electrochemcial catalytic activity as those Pt material on the spherical NPs. Most known Pt NPs prepared by one-pot synthesis methods are spherical. Others possess special geometries through a specified preparation process. However, none of them has claimed to be able to deposit on a carbon support a uniform plate-shape Pt NPs at size from a few nanometers to 20 nanometers. Much large and thick plates were reported. Blue-O Tech has successfully developed and produced innovative plat-shape Pt containing NPs on carbon supports including Cabot XC-72R and nano-graphite. This innovation has been protected by a PCT patent application. The advantages of such plate-shape Pt containing NPs includes: 1. The ability to develop ultra-low loading of Pt-containing catalysts 2. The ability to form more active sites produced by co-growth of subnanometer NPs in a plate shape structure 3. The ability to form plate-shaped Pt-Alloy NPs 4. The ability to anchor the novel NPs on support 5. Extreme High Purity Pt-containing composition
Platinum has been used for hydrogen fuel cell battery over decades. The main reason is that platinum catalyst has been the most active and durable catalysts for hydrogen fuel cell application. Finding ultra-low loading of platinum catalyst has been the top research topic. Various means have been developed to reduce Platinum loading on various supports. There have been various barriers for the commercialization of some advanced technologies that produce desirable Platinum containing catalysts due to the large capital investment and/or high operation cost. The other vital commercial requirement is the durability of the catalysts. Various researches have focused on to bond Pt NPs on the surface of various catalyst supports. One purpose of this improvement is to reduce the migration of Pt NPs that leads to form large particles, which will reduce the catalytic surface area to have a lower catalytic activity.
The third key challenge is the tolerance of the catalysts with some impurities like low carbon monoxide (CO) , which is a common component in a low grade hydrogen gas. Many Pt containing alloys have been developed to combat this problem. Among them, Pt-Pd alloy has been found to have excellent performance for both catalytic activity and tolerance to CO poisoning.
There is no known Pt containing catalyst(s) that can combat above three difficulties at same time. Blue-O Tech has developed novel Pt-containing catalysts by using a novel process that addresses above all three key questions. Blue-O Tech is undergoing a scale up development of their PCT patent pending nanocatalysts. Blue-O Tech welcomes any company who are interested in our technology to contact us.
Further, most oxidization of carbon support methods imposes a potential contamination of the final catalyst product with various other unwanted metal ions, which exist in the acid solution used in the reaction or pre-treatment of the support. Even using extreme washing process, the contents of those contamination ions can reach 500 ppm to 1000 ppm in some well-sold commercial fuel cell catalyst products. Considering the contamination of iron, it has the ability to catalyze some intermediate product H2O2 from oxygen reduction reaction on platinum to form hydroxyl radicals, which is known to be a key factor of damaging the proton exchange membrane. Blue-O Tech Pt-containing nanocatalysts show almost zero contents of any other metals other than the metals that were desired. Blue-O Tech process employees highly purity crystalline precursors and high purity non-aqueous organic solvents. This extreme high purity metallic NPs on carbon support is deemed to surpass other similar catalysts over durability, sustained activity, and safety of application.